El pretratamiento con alopurinol disminuye la translocación bacteriana y atenúa los cambios morfológicos de la mucosa intestinal en un modelo de isquemia-reperfusión intestinal en ratas

Autores/as

  • Efraín Riveros Universidad de Boyacá
  • Iván Pérez Universidad de Boyacá
  • Karen Becerra Universidad de Boyacá
  • Manuel Bustamante Clínica de los Andes de Tunja
  • Cristina Millán Universidad de Boyacá
  • Fred Manrique Universidad Nacional de Colombia

Resumen

Objetivo. Evaluar el efecto protector contra la lesión por isquemia-reperfusión intestinal del pretratamiento con alopurinol en ratas.

Materiales y métodos. Se llevó a cabo un experimento controlado en animales. Un grupo de 10 ratas Wistar de características morfométricas comparables se mantuvo en bioterio bajo condiciones controladas por tres días. A cinco animales se les administró 50 mg/kg diarios de alopurinol por vía oral durante los tres días y, una dosis adicional, antes de inducir isquemia intestinal por ligadura quirúrgica durante 60 minutos seguida de 60 minutos de reperfusión. El otro grupo de cinco ratas no recibió el medicamento. Se hizo el análisis histológico de la mucosa intestinal al final del experimento por medio de la clasificación de Chou y se tomaron hemocultivos de la cavidad cardiaca.

Resultados. Se encontraron hemocultivos positivos en 20 % de los animales pretratados con alopurinol, en comparación con el 100 % de las ratas control (p<0,0001). Se evidenció lesión profunda en la mucosa intestinal en todos los casos. La administración previa a la injuria de alopurinol redujo significativamente la lesión por isquemia-reperfusión (p<0,001).

Conclusiones. La administración de alopurinol antes de la isquemia intestinal, reduce los cambios morfológicos ocasionados por isquemia-reperfusión. El efecto benéfico se demostró con el pretratamiento por tres días.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Efraín Riveros, Universidad de Boyacá

Médico cirujano especialista en cuidado intensivo y anestesia; profesor asociado, Universidad de Boyacá; coordinador, Unidad de Cuidado Intensivo, Clínica de los Andes de Tunja; líder, Grupo OXIGENAR, Tunja, Colombia

Iván Pérez, Universidad de Boyacá

Estudiante de tercer año, Facultad de Medicina, Universidad de Boyacá, Tunja, Colombia

Karen Becerra, Universidad de Boyacá

Estudiante de tercer año, Facultad de Medicina, Universidad de Boyacá, Tunja, Colombia

Manuel Bustamante, Clínica de los Andes de Tunja

Médico cirujano; Ph.D en Patología; profesor titular, Universidad de Boyacá; coordinador, Servicio de Patología, Clínica de los Andes de Tunja, Tunja, Colombia

Cristina Millán, Universidad de Boyacá

Bacteriologa; profesora asociada, Universidad de Boyacá, Tunja,

Fred Manrique, Universidad Nacional de Colombia

Enfermero, Ph.D en Salud Pública y Ph.D en Medicina Clínica; profesor titular, Universidad Nacional de Colombia, Bogotá, D.C., Colombia

Referencias bibliográficas

1. Gelman S, Mushlin PS. Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics. Anesthesiology. 2004;100:434-9.
https://doi.org/10.1097/00000542-200402000-00036

2. Chang PI, Rutlen DL. Effects of beta-adrenergic agonists on splanchnic vascular volume and cardiac output. Am J Physiol. 1991;261:H1499-507.
https://doi.org/10.1152/ajpheart.1991.261.5.H1499

3. Brooksby GA, Donald DE. Dynamic changes in splanchnic blood flow and blood volume in dogs during activation of sympathetic nerves. Circ Res. 1971;29:227-38.
https://doi.org/10.1161/01.RES.29.3.227

4. Scott-Douglas NW, Robinson VJ, Smiseth OA, Wright CI, Manyari DE, Smith ER, et al. Effects of acute volume loading and hemorrhage on intestinal vascular capacitance: a mechanism whereby capacitance modulates cardiac output. Can J Cardiol. 2002;18:515-22.

5. Rothe CF. Control of capacitance vessels. In: Shepherd AP, Granger DN, editors. Physiology of the intestinal circulation. New York: Raven; 1984. p. 73.

6. Rochat MC. An introduction to reperfusion injury. Compend Contin Educ Pract Vet. 1991;13:923-30.

7. Kong SE, Blennerhassett LR, Heel KA, McCauley RD, Hall JC. Ischaemia-reperfusion injury to the intestine. Aust NZ J Surg. 1998;68:554-61.
https://doi.org/10.1111/j.1445-2197.1998.tb02099.x

8. Moore FA, Sauaia A, Moore EE. Postinjury multiple organ failure: a bimodal phenomenon. J Trauma. 1996;40:501-12.
https://doi.org/10.1097/00005373-199604000-00001

9. Deitch EA. Multiple organ failure: Pathophysiology and poten- tial future therapy. Ann Surg. 1992;216:117-34.
https://doi.org/10.1097/00000658-199208000-00002

10. Deitch EA, Da-Zhong XU, Lu Q. Gut lymph hypothesis of early shock and trauma-induced multiple organ dysfunction syndrome: A new look at gut origin sepsis. J Organ Dysfunct. 2006;2:70-9.
https://doi.org/10.1080/17471060600551772

11. Ivatory RR, Simon RJ, Islam S, Fueg A, Rohman M, Stahl WM. A prospective, randomized study of end points of resuscitation after major trauma: Global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll. 1996;183:145- 54.

12. Deitch EA. Intestinal permeability is increased in burn patients shortly after injury. Surgery. 1990;107:411-6.

13. Rush BF, Sori AJ, Murphy TF, Smith S, Flanagan JJ, Machiedo GW. Endotoxemia and bacteremia during hemorrhagic shock. Ann Surg. 1998;207:549-54.
https://doi.org/10.1097/00000658-198805000-00009

14. Doig CJ, Sutherland LR, Sandham JD, Fick GH, Verhoef M, Meddings JB. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med. 1998;158:444-51.
https://doi.org/10.1164/ajrccm.158.2.9710092

15. Pober JS, Cotran RS. Cytokines and endothelial cell biology. Physiol Rev 1990;70:427-51.
https://doi.org/10.1152/physrev.1990.70.2.427

16. Goodman ER, Kleinstein E, Fusco AM, Quinlan DP, Lavery R, Livingston DH, et al. Role of interleukin 8 in the genesis of acute respiratory distress syndrome through an effect on neutrophil apoptosis. Arch Surg. 1998;133:1234-9.
https://doi.org/10.1001/archsurg.133.11.1234

17. Patrick DA, Moore FA, Moore EE, Barnett CC, Silliman CC. Neutrophil priming and activation in the pathogenesis of postinjury multiple organ failure. New Horiz. 1996;4:194- 210.

18. Langenfeld J, Livingston DH, Machiedo GW. Red blood cell deformability is an early indicator of infection. Surgery. 1991;110:398-403.

19. Livingston DH, Gentile P, Malangoni MA. Bone marrow failure after hemorrhagic shock. Circ Shock. 1990;30:255-63.

20. Balzan S, De Almeida C, De Cleva R, Zilberstein B, Cecconello I. Bacterial translocation: Overview of mechanisms and clinical impact. J Gastroenterol Hepatol. 2007;22:464-71.
https://doi.org/10.1111/j.1440-1746.2007.04933.x

21. Moore FA, Moore EE, Poggetti R, McAnena OJ, Peterson VM, Abernathy CM, et al. Gut bacterial translocation via the portal vein: A clinical perspective with major torso trauma. J Trauma. 1991;31:629-38.
https://doi.org/10.1097/00005373-199105000-00006

22. Lewis A, Harkin DW, D'Sa AA, McCallion K, Halliday MJ, Campbel, FC. Primed neutrophils in the venous effluent convert local to systemic inflammation after limb ischaemia-reperfusion injury. Br J Surg. 2001;88(Supp.1):3.
https://doi.org/10.1046/j.1365-2168.2001.01757-12.x

23. Ramaiah SK, Jaeschke H. Role of neutrophils in the patho- genesis of acute inflammatory liver injury. Toxicol Pathol. 2007;35:757-66.
https://doi.org/10.1080/01926230701584163

24. Moore FA, Moore EE, Poggetti R, McAnena OJ, Peterson VM, Abernathy CM, et al. Gut bacterial translocation via the portal vein: A clinical perspective with major torso trauma. J Trauma. 1991;31:629-38.
https://doi.org/10.1097/00005373-199105000-00006

25. Magnotti LJ, Upperman JS, Xu DZ, Lu Q, Deitch EA. Gut derived mesenteric lymph but not portal blood increases endo- thelial cell permeability and potentiates lung injury following hemorrhagic shock. Ann Surg. 1998;228:518-27.
https://doi.org/10.1097/00000658-199810000-00008

26. Davidson MT, Deitch EA, Lu Q, Osband A, Feketeova E, Nemeth ZH, et al. A study of the biologic activity of trauma- hemorrhagic shock mesenteric lymph over time and the relative role of cytokines. Surgery. 2004;136:32-41.
https://doi.org/10.1016/j.surg.2003.12.012

27. Nastos C, Kalimeris K, Papoutsidakis N, Defterevos G, Pafiti A, Kalogeropoulou H, et al. Antioxidant treatment attenuates intestinal mucosal damage and gut barrier dysfunction after major hepatectomy. Study in a porcine model. J Gastrointest Surg. 2011;15:809-17.
https://doi.org/10.1007/s11605-011-1475-0

28. Schoenberg MH, Beger HG. Reperfusion injury after intestinal ischemia. Crit Care Med. 1993;21:1376-87.
https://doi.org/10.1097/00003246-199309000-00023

29. Peters-Scholte C, Braun K, Koster J, Kops N. Effects of al- lopurinol and deferoxamine on reperfusion injury of the brain in newborn piglets after neonatal ihipoxia-ischemia. Pediatr Res. 2003;54:516-22.
https://doi.org/10.1203/01.PDR.0000081297.53793.C6

30. Yang H, Sheng Z, Guo Z, Shi Z, Lu J, Chai J, et al. Oxygen free radical injury and its relation to bacterial and endotoxin translocation after delayed fluid resuscitation: clinical and experimental study. Chin Med J (Engl). 1997;110:118-24.

31. Tandon P, García-Tsao G. Bacterial infections and multiorgan failure in cirrosis. Semin Liver Dis. 2008;28:26-42.
https://doi.org/10.1055/s-2008-1040319

32. Taylor DE. Reviving the motor of multiple organ dysfunction síndrome: Gut dysfunction in ARDS and multiorgan failure. Respir Care Clin North Am. 1998;4:611-31.

33. Moore FA. The role of the gastrointestinal tract in post-injury multiple organ failure. Am J Surg. 1999;178:449-53.
https://doi.org/10.1016/S0002-9610(99)00231-7

34. Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA. Post-injury multiple organ failure: the role of the gut. Shock. 2001;15:1-10.
https://doi.org/10.1097/00024382-200115010-00001

35. Pastores SM, Katz DP, Kvetan V. Splachnic ischemia and gut mucosal injury in sepsis and the multiple organ dysfunction síndrome. Am J Gastroenterol. 1996;91:1697-710.

36. Nieuwenhuijzen GA, Goris RJ. The gut: The motor of multiple organ dysfunction syndrome? Curr Opin Nutr Metab Care. 1999;2:399-404.
https://doi.org/10.1097/00075197-199909000-00008

37. Taylor DE, Piantadosi CA. Oxidative metabolism in sepsis and sepsis síndrome. J Crit Care. 1995;10:122-35.
https://doi.org/10.1016/0883-9441(95)90003-9

38. Fares PL, Simon RJ, Martella AT. Intestinal permeability cor- relates with severity of injury in trauma patients. J Trauma. 1998;44:1031-6.
https://doi.org/10.1097/00005373-199806000-00016

39. Koike K, Moore EE, Moore FA. Gut ischemia/reperfusion produces lung injury independent of endotoxin. Crit Care Med. 1994;22:1438-44.
https://doi.org/10.1097/00003246-199409000-00014

40. Cem T, Ayhan K, Kessaf A. Prevention of deleterious effects of reperfusion injuryusing one week high dose allopurinol. Dig Dis Sci. 2001;40:430-7.

41. Dawiskiba T, Pupka A, Skora J, Janczak D, Pawtowski S, Krawczyk Z et al. The effect of allopurinol on intestinal ischemia-reperfusion injury development - the new approach. Chirurgia Polska. 2007;9:25-33.

42. Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesions in low-flow states. A morphological, hemody- namic and metabolic reappraisal. Arch Surg. 1970;101:478-83.
https://doi.org/10.1001/archsurg.1970.01340280030009

43. Peto K, Nemeth N, Brath E, Takacs IE, Baskurt OK, Meisel- man HJ, et al. The effects of renal ischemia-reperfusion on hemorheological factors: Preventive role of allopurinol. Clin Hemorheol Microcirc. 2007;37:347-58.

44. Ping-Guo Liu, Song-Qing He, Yan-Hong Z, Jian Wu. Pro- tective effects of apocynin and allopurinol on ischemia/ reperfusion-induced liver injury in mice. World J Gastroenterol. 2008;14:2832-7.
https://doi.org/10.3748/wjg.14.2832

45. Guide for the care and use of laboratory animals. NIH. Wash- ington, D.C.: National Academy Press; 1996. p. 11-40.

46. Mrad A. Ética en la investigación con modelos animales experimentales. Alternativas y las 3 R ́s de Russell. Una res- ponsabilidad y un compromiso ético que nos compete a todos. Rev Colomb Bioética. 2006;1:163-83.

47. Guyton AC, Jones CE, Coleman TG. Normal cardiac output and its variation. In: Guyton AC, Joes CE, Coleman TG, editors. Cardiac output and its regulation. Second edition. Philadelphia: WB Saunders Company; 1973. p. 3-29.

48. Parks DA, Granger DN. Contributions of ischemia and reperfu- sion to mucosal lesion. Am J Physiol. 1986;250:G749-53.
https://doi.org/10.1152/ajpgi.1986.250.6.G749

49. McCord JM, Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem. 1968;243:5753-60.

50. McCord JM, Roy RS. The pathophysiology of superoxide: Roles in inflammation and ischemia. Can J Physiol Pharmacol. 1982;60:1346-52.
https://doi.org/10.1139/y82-201

51. Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM. Ischemic injury in the cat small intestine: Role of super- oxide radicals. Gastroenterology. 1982;82:9-15.
https://doi.org/10.1016/0016-5085(82)90115-9

52. Granger DN, McCord JM, Parks DA, Hollwarth ME. Xan- thine oxidase inhibitors attenuate ischemia-induced vascular permeability changes in the cat intestine. Gastroenterology. 1986;90:80-4.
https://doi.org/10.1016/0016-5085(86)90078-8

53. Meneshian A, Bulkley GB. The physiology of endothelial xan- thine oxidase: From urate catabolism to reperfusion injury to inflammatory signal ransduction. Microcirculation. 2002;9:161- 75.
https://doi.org/10.1038/sj.mn.7800136

54. Parks DA, Williams TK, Beckman JS. Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevalu- ation. Am J Physiol. 1988;254:768-74.
https://doi.org/10.1152/ajpgi.1988.254.5.G768

55. Fan H, Sun B, Gu Q, Lafond-Walker A, Cao S, Becker LC. Oxygen radicals trigger activation of NF-kappaB and AP-1 and upregulation of ICAM-I in reperfused canine heart. Am J Physiol. 2002;282:H1778-86.
https://doi.org/10.1152/ajpheart.00796.2000

56. Nalini S, Mathan MM, Balasubramanian KA. Oxygen free radi- cal induced damage during intestinal ischemia/reperfusion in normal and xanthine oxidase deficient rats. Mol Cell Biochem. 1993;124:59-66.
https://doi.org/10.1007/BF01096382

57. Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM. Ischemic injury in the cat small intestine: Role of super- oxide radicals. Gastroenterology. 1982;82:9-15.
https://doi.org/10.1016/0016-5085(82)90115-9

58. Kacmaz M, Ozturk HS, Karaayvaz M, Guven C, Durak I. En- zymatic antioxidant defence mechanism in rat intestinal tissue is changed after ischemia-reperfusion. Effects of allopurinol plus antioxidant combination. Can J Surg. 1999;42:427-31.

59. Akgur F, Olguner M, Yenici O, Gokden M, Aktung T, Yilmaz M, et al. The effect of allopurinol pretreatment on intestinal hypoperfusion encountered after correlation of intestinal vol- vulus. J Pediatr Surg. 1996;31:1205-7.
https://doi.org/10.1016/S0022-3468(96)90232-8

60. llhan H, Alatas O, Tokar B, Olak O, Pasaoglu O, Koku N. Effects ofthe anti-ICAM-1 monoclonal antibody, allopurinol, and methylene blue on intestinal reperfusion injury. J Pediatr Surg. 2003;38 1591-5.
https://doi.org/10.1016/S0022-3468(03)00568-2

Descargas

Publicado

2012-07-01

Cómo citar

(1)
Riveros, E.; Pérez, I.; Becerra, K.; Bustamante, M.; Millán, C.; Manrique, F. El Pretratamiento Con Alopurinol Disminuye La translocación Bacteriana Y atenúa Los Cambios morfológicos De La Mucosa Intestinal En Un Modelo De Isquemia-reperfusión Intestinal En Ratas. Rev Colomb Cir 2012, 27, 227-234.

Número

Sección

Artículo Original

Métricas

QR Code