Nanotecnología: avances y expectativas en cirugía

Autores/as

  • Sara Jaimes Pontificia Universidad Javeriana
  • Alisia González Pontificia Universidad Javeriana
  • Carolina Granados Pontificia Universidad Javeriana
  • David Álvarez Pontificia Universidad Javeriana
  • Erick Espitia Pontificia Universidad Javeriana

Palabras clave:

nanotecnología, tamaño de la partícula, espectrometría, raman, neoplasias

Resumen

La nanotecnología es una ciencia enfocada al estudio y la manipulación de partículas sólidas coloidales de tamaños que oscilan entre 10 y 1.000 nanómetros, que, a su vez, pueden ser usadas ampliamente en el campo quirúrgico como elementos de diagnóstico temprano de lesiones tumorales, marcadores tumorales intraoperatorios o distribuidoras de medicamentos a blancos específicos, entre otros.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sara Jaimes, Pontificia Universidad Javeriana

Estudiante, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia

Alisia González, Pontificia Universidad Javeriana

Estudiante, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia

Carolina Granados, Pontificia Universidad Javeriana

Estudiante, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia

David Álvarez, Pontificia Universidad Javeriana

Médico, residente de Urología, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia

Erick Espitia, Pontificia Universidad Javeriana

Médico cirujano; profesor instructor, Departamento de Cirugía, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia

Referencias bibliográficas

1. Kreuter J. PharmazeutischeTechnologie, Definición de nano- partículas. Fecha de consulta: 1 de abril de 2011. Disponible en: http://www.pharmazie.uni-frankfurt.de/PharmTech/ipt_kreu- ter/index.html.

2. Whitesides GM. The "right" size in nanobiotechnology. Nat Biotechnol. 2003;21:1161-5.
https://doi.org/10.1038/nbt872

3. Álvarez JD, Hernández C, Cataño JG. Nanotecnología, avances y expectativas en urología. Urol colomb. 2008;18:41-8.

4. Sahoo SK, Labhasetwar V. Nanotech approaches to drug de- livery and imaging. Drug Disc Today. 2003;8:1112-20.
https://doi.org/10.1016/S1359-6446(03)02903-9

5. Emerich DF, Thanos CG. Targeted nanoparticle-based drug de- livery and diagnosis. Journal of Drug Targeting. 2007;15:163- 83.
https://doi.org/10.1080/10611860701231810

6. Medical Subject Headings (MeSH) Database. Fecha de con- sulta: 1 de abril de 2011. Disponible en: http://www.ncbi.nlm. nih.gov/mesh/68008081.

7. Kim P, Lieber CM. Nanotube nanotweezers. Science. 1999;286:2148-50.
https://doi.org/10.1126/science.286.5447.2148

8. Kim P, Lieber CM. Report: Nanotube nanotweezers. 1999;286:2148-50.
https://doi.org/10.1126/science.286.5447.2148

9. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes -the route toward applications. Science. 2002;297:787-92.
https://doi.org/10.1126/science.1060928

10. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2002;21:41-6.
https://doi.org/10.1038/nbt764

11. Singhal S, Nie S, Wang MD. Nanotechnology applications in surgical oncology. Annu Rev Med. 2010;61:359-73.
https://doi.org/10.1146/annurev.med.60.052907.094936

12. Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang L, Zharov VP. In vivo magnetic enrichment and multiplex photoacous- tic detection of circulating tumour cells. Nat Nanotechnol. 2009;4:855-60.
https://doi.org/10.1038/nnano.2009.333

13. Jain KK. Advances in the field of nanooncology. Jain BMC Medicine. 2010;8:83.
https://doi.org/10.1186/1741-7015-8-83

14. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Rouslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA. 2002;99:12617-21.
https://doi.org/10.1073/pnas.152463399

15. Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie SM. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969-76.
https://doi.org/10.1038/nbt994

16. Yu XF, Chen LD, Li KY, Li Y, Xuan Luo SX, Liu Jia, et al. Immunofluorescence detection with quantum dot bioconju- gates for hepatoma in vivo. J Biomed Opt. 2007;12:014008-1 - 014008-5.
https://doi.org/10.1117/1.2437744

17. Weibo C, Shin DW, Chen K, Gheysens O, Qizhen C, Shan X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006;6:669-76.
https://doi.org/10.1021/nl052405t

18. Stroh M, Zimmer JP, Duda DG, Levchenko T, Cohen K, Brown E. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med. 2005;11:678-82.
https://doi.org/10.1038/nm1247

19. Tada H, Higuchi H, Wanatabe TM, Ochuchi N. In vivo real- time tracking of single quantum dots conjugated with mono- clonal anti-HER2 antibody in tumors of mice. Cancer Res. 2007;67:1138-44.
https://doi.org/10.1158/0008-5472.CAN-06-1185

20. Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen G, Shin D. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83-90.
https://doi.org/10.1038/nbt1377

21. Tanaka E, Choi HS, Fujii H, Franfioni JV. Image-guided oncologic surgery using invisible light: Completed preclinical development for sentinel lymph node mapping. Ann Surg Oncol. 2006;13:1671-81.
https://doi.org/10.1245/s10434-006-9194-6

22. Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003;63:8122-5.

23. Schulz MD, Khullar O, Frangioni JV, Grinstaff MW, Colson Y. Nanotechnology in thoracic surgery. Ann Thorac Surg. 2010;89:S2188-90.
https://doi.org/10.1016/j.athoracsur.2010.02.111

24. Troyan S, Kianzad V, Gibbs-Strauss S, Gioux S, Matsui S, Oketokoun R. The FLARE intraoperative near-infrared fluo- rescence imaging system: A first-in-human clinical trial in breast cancer sentinel lymphnode mapping. Ann Surg Oncol. 2009;16:2943-52.
https://doi.org/10.1245/s10434-009-0594-2

25. Flaherty KT, Malkowicz SB, Vaughn DJ. Phase I study of weekly liposome-encapsulated doxorubicin in patients with advanced, androgen-independent prostate cancer. Am J Clin Oncol. 2004;27(2):136-9.
https://doi.org/10.1097/01.coc.0000054888.02055.4E

26. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, et al. Tumor regression by targeted gene delivery to the neovasculature. Science. 2002;296:2404-7.
https://doi.org/10.1126/science.1070200

27. Boulaiz H, Álvarez PJ, Ramírez A, Marchal JA, Prados J, Rodríguez-Serrano F, et al. Nanomedicine: Application areas and development prospects. Int J Mol Sci. 2011;12:3303-21.
https://doi.org/10.3390/ijms12053303

28. Garry MD, Mark S, Jerzy K. Nanotechnology for the treatment of coronary in stent restenosis: A clinical perspective. Vascular Cell. 2011;3:8.
https://doi.org/10.1186/2045-824X-3-8

29. Varshosaz J, Soheili M. Production and in vitro characterization of lisinopril loaded nanoparticles for the treatment of restenosis in stented coronary arteries. J Microencapsul. 2008;25:478-86.
https://doi.org/10.1080/02652040802054679

30. Hakim M, Billan S, Tisch U, Peng G. Diagnosis of head-and-neck cancer from exhaled breath. Br J Cancer. 2011;104:1649-55.
https://doi.org/10.1038/bjc.2011.128

Descargas

Publicado

2012-04-01

Cómo citar

(1)
Jaimes, S.; González A.; Granados, C.; Álvarez, D.; Espitia, E. Nanotecnología: Avances Y Expectativas En cirugía. Rev Colomb Cir 2012, 27, 158-166.

Número

Sección

Artículo de Revisión

Métricas

QR Code

Algunos artículos similares: